预计阅读本页时间:-
The Old 220 Formula versus the New 180 Formula
Using the traditional 220 Formula, athletes would determine the training heart rate by two steps:
广告:个人专属 VPN,独立 IP,无限流量,多机房切换,还可以屏蔽广告和恶意软件,每月最低仅 5 美元
- The first is subtracting their age from 220 to get their maximum heart rate. In reality, most athletes who obtain their maximum heart rate by pushing themselves to exhaustion will find it is probably not 220 minus their age. About a third will find their maximum is above this heart rate, a third will be below, and only a third may be close to what they’ve calculated. These inaccuracies are often significant.
- The second step uses this so-called maximum heart rate, which is then multiplied by 65, 70, 75, 80, or 85 percent. The percentage most athletes choose is the higher option since most feel the need to train with more intensity to obtain benefits. This results in a relatively high training heart rate. Moreover, the range between 65 and 85 percent is so wide that even athletes who work out without thought of heart rate or intensity will fall into this range.
Since everyone is unique, the 220 Formula never made much sense to me, as it relies on an estimated maximum heart rate which is not very accurate; in addition, this formula is not individualized—it fails to take an athlete’s fitness, health, and aging into account.
There are two ways to define age. Chronological age is measured by calendar years, but this may not be a good reflection of fitness and health. We all know athletes who appear much younger—or older—than their chronological age. Some maintain better levels of physical, chemical, and mental function throughout life, reflecting a truer physiological age, while others who are the same chronological age do not. We can evaluate these differences by measuring heart and muscle function, blood sugar, and hormone levels, and by performing other clinical tests. An appropriate questionnaire that asks about fitness and health history is also very useful to assess physiological age, and would better represent “age” in a new and more accurate formula.
Over time, I began piecing together a mathematical formula, taking the optimal heart rates in athletes who had previously been assessed as a guide. Instead of 220 minus the chronological age multiplied by some percentage, I used 180 minus a person’s chronological age, which is then adjusted to reflect their physiological age as indicated by fitness and health factors.
By comparing the new 180 Formula with my relatively lengthy process of one-on-one evaluations, it became clear that this new formula matched very well—in other words, my tedious assessment of an athlete and the 180 Formula resulted in a number that was the same or very close in most cases.
Early in this process, I made number of relatively minor changes to the formula. By the early 1980s, I settled on the final, most effective formula and this is the one in use today: 180 minus a person’s chronological age, which is then adjusted to reflect their physiological age as indicated by fitness and health factors. The use of the number 180 was and is not significant other than as a means to finding the end number. Plus, 180 minus age itself is not a meaningful number; for example, it is not associated with VO2max, lactate threshold, or other traditional measurements. The end number is an athlete’s maximum aerobic heart rate. This is the training heart rate that reflects optimal aerobic training, and a number which, when exceeded, indicates a rapid transition to more anaerobic training. Through the use of this 180 Formula, all athletes can obtain their ideal individual aerobic training rates.