B.11 Implementation-defined Limits: <limits.h> and <float.h>

The header <limits.h> defines constants for the sizes of integral types. The values below are acceptable minimum magnitudes; larger values may be used.

广告:个人专属 VPN,独立 IP,无限流量,多机房切换,还可以屏蔽广告和恶意软件,每月最低仅 5 美元

 

CHAR_BIT   8bits in a char

CHAR_MAX UCHAR_MAX or SCHAR_MAX  maximum value of char

CHAR_MIN 0 or SCHAR_MINmaximum value of char

INT_MAX 32767maximum value of int

INT_MIN -32767minimum value of int

LONG_MAX 2147483647maximum value of long

LONG_MIN -2147483647minimum value of long

SCHAR_MAX+127maximum value of signed char

SCHAR_MIN-127minimum value of signed char

SHRT_MAX +32767maximum value of short

SHRT_MIN -32767minimum value of short

UCHAR_MAX255maximum value of unsigned char

UINT_MAX 65535maximum value of unsigned int

ULONG_MAX4294967295maximum value of unsigned long

USHRT_MAX65535maximum value of unsigned short

The names in the table below, a subset of <float.h>, are constants related to floating-point arithmetic. When a value is given, it represents the minimum magnitude for the corresponding quantity. Each implementation defines appropriate values.

 

FLT_RADIX 2radix of exponent, representation, e.g., 2, 16

FLT_ROUNDS floating-point rounding mode for addition

FLT_DIG 6decimal digits of precision

FLT_EPSILON 1E-5smallest number x such that 1.0+x != 1.0

FLT_MANT_DIG  number of base FLT_RADIX in mantissa

FLT_MAX 1E+37  maximum floating-point number

FLT_MAX_EXP maximum n such that FLT_RADIXn-1 is representable

FLT_MIN 1E-37minimum normalized floating-point number

FLT_MIN_EXP minimum n such that 10n is a normalized number

DBL_DIG 10decimal digits of precision

DBL_EPSILON 1E-9smallest number x such that 1.0+x != 1.0

DBL_MANT_DIGnumber of base FLT_RADIX in mantissa

DBL_MAX 1E+37maximum double floating-point number

DBL_MAX_EXP maximum n such that FLT_RADIXn-1 is representable

DBL_MIN 1E-37minimum normalized double floating-point number

DBL_MIN_EXP minimum n such that 10n is a normalized number


Back to Appendix A --  Index --  Appendix C