预计阅读本页时间:-
Why Do People Use Python?
Because there are many programming languages available today, this is the usual first question of newcomers. Given that there are roughly 1 million Python users out there at the moment, there really is no way to answer this question with complete accuracy; the choice of development tools is sometimes based on unique constraints or personal preference.
But after teaching Python to roughly 225 groups and over 3,000 students during the last 12 years, some common themes have emerged. The primary factors cited by Python users seem to be these:
广告:个人专属 VPN,独立 IP,无限流量,多机房切换,还可以屏蔽广告和恶意软件,每月最低仅 5 美元
Software quality
For many, Python’s focus on readability, coherence, and software quality in general sets it apart from other tools in the scripting world. Python code is designed to be readable, and hence reusable and maintainable—much more so than traditional scripting languages. The uniformity of Python code makes it easy to understand, even if you did not write it. In addition, Python has deep support for more advanced software reuse mechanisms, such as object-oriented programming (OOP).
Developer productivity
Python boosts developer productivity many times beyond compiled or statically typed languages such as C, C++, and Java. Python code is typically one-third to one-fifth the size of equivalent C++ or Java code. That means there is less to type, less to debug, and less to maintain after the fact. Python programs also run immediately, without the lengthy compile and link steps required by some other tools, further boosting programmer speed.
Program portability
Most Python programs run unchanged on all major computer platforms. Porting Python code between Linux and Windows, for example, is usually just a matter of copying a script’s code between machines. Moreover, Python offers multiple options for coding portable graphical user interfaces, database access programs, web-based systems, and more. Even operating system interfaces, including program launches and directory processing, are as portable in Python as they can possibly be.
Support libraries
Python comes with a large collection of prebuilt and portable functionality, known as the standard library. This library supports an array of application-level programming tasks, from text pattern matching to network scripting. In addition, Python can be extended with both homegrown libraries and a vast collection of third-party application support software. Python’s third-party domain offers tools for website construction, numeric programming, serial port access, game development, and much more. The NumPy extension, for instance, has been described as a free and more powerful equivalent to the Matlab numeric programming system.
Component integration
Python scripts can easily communicate with other parts of an application, using a variety of integration mechanisms. Such integrations allow Python to be used as a product customization and extension tool. Today, Python code can invoke C and C++ libraries, can be called from C and C++ programs, can integrate with Java and .NET components, can communicate over frameworks such as COM, can interface with devices over serial ports, and can interact over networks with interfaces like SOAP, XML-RPC, and CORBA. It is not a standalone tool.
Enjoyment
Because of Python’s ease of use and built-in toolset, it can make the act of programming more pleasure than chore. Although this may be an intangible benefit, its effect on productivity is an important asset.
Of these factors, the first two (quality and productivity) are probably the most compelling benefits to most Python users.